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S U P E R C O N D U C T I V I T Y  U N D E R  I R R A D I A T I O N  

C O N D I T I O N S  
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The irradiation effect of a particle flow on the electrodynamic properties of a conductor is discussed. It is 

established that a relationship exists between three energy quanta of different origin and high-temperature 

superconduction current. 

The influence of irradiation on superconductor properties receives ever-increasing attention in experimental 

physics. Investigation of this effect yields important new results in the field of high-temperature superconductivity 

(HTSC). This is also of crucial importance for the general SC theory. 

It has been shown previously [1 ] that superconductivity develops due to an additional intermolecular 
interaction which is stable at a temperature lower than the critical one. In turn, the established interaction, which 

influences the orientational ordering of the entire system, is caused by the initial induced current. Such a conclusion 

is based on a quantum-mechanical approach that accounts for the successive transformation of the number of 

particles, whose character is an inherent dynamic property of the system. 

Since a real atom is an irthomogeneous system (AB), then it is necessary, within the framework of the 

considered formalism, to take into account the presence of two energy quanta directly related to subsystems A and 

B. A magnetic-field quantum eH absorbed by subsystem A (a nucleus with a meson cloud) determines the 

rearrangement of electron sybsystem B with transition energy eE and creation of a current with density j. The 

quantum eE determines, in turn, the additional molecular bond in the presence of an electric current. 

The energy quanta introduced for magnetic and electric fields, respectively, are represented in the form 

e H = h H H  and e E = h E E .  (1) 

Using hH(hE) in combination with two fundamental constants, we introduce the corresponding units of length and 

time: 

l -v c, tH-  (2) 

Considering e as an energy quantum of an arbitrary physical field, we can also write the following 

expression for it 

e = hgAr, (3) 

in which Ar is an elementary shift for a finite interval of time Atg. Now with the aid of the three quantities ~, c, 
and hg we obtain a new system of units 

7~c 
lg = V f  ( - ~ g ) ,  tg = ~ ( h - ~ )  (4) 

and using the latter write an expression for the velocity v = (Ar)/(Atg) assuming tg = Ate,: 
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Expressions (1) may be represented in the form of (3) 

e H = F n Ar, e E = F e Ar,  (6) 

where FH is the Lorentz force and FE = eE. 

When the magnetic and electric fields are mutually perpendicular (the vector Ar is collinear with E), using 
(5) for v-- c we arrive at 

/2 E = e~2~ c , (7) 

e E 

and the important general relations 

< I .  (8) 

In superconductivity theory two quantities lH and lE correspond to two linear dimensions, namely, the 

London length 5 and the correlation parameter ~. The critical temperature is defined in terms of e E 

e E 
Tcr = T "  (9) 

Here eE is the known energy gap A. 
In complex molecules forming HTSCs, more than one quantum transition with a change in the collective 

energy level is realized, which inevitably causes enhancement of the intermolecular interaction potential and, as a 

consequence, an increase in the critical parameters (rupture of the addiitonal intermolecular bond means SC 

failure). 
Using the Maxwell equations, we find the relationship between the energy quanta eH and e E and the current 

j [11: 

de H de E 
0---7- - O---T + 4zhEj" (10) 

In the presence of superconductly, the derivative OeH/Ot vanishes and then from (10) the equations stem which are 

analogous to the Ginzburg-Landau equations in the SC theory (see [2 ], p. 217). 

The situation becomes substantially more complicated when the conductor, irradiated by a particle flux, is 

capable of absorbing the particles. Then, in addition to the energy quanta e~t and eE, we must consider the energy 

quantum era, in which is equal to the kinetic energy of an absorbed particle. All three quanta belong to different 

atom subsystems, whose transformational quantum-mechanical properties form, as a whole, a system of the ABC 

type (the energy quantum era is absorbed by the nucleus, eH by a nuclear cloud, and eE pertains to the electron 

subsystem C). 
It is to be expected that, instead of Eq. (10), the following relationship takes place between the 

aforementioned three energy quanta and the current 

0era _ 0e--H 0ee 4JrhEj (11) 
Ot Ot Ot 

In the absence of irradiation, it becomes (10). But in the case of irradiation, all three quantities, i.e., ell, eE, and 

j, undergo changes. We will substantiate the sought relation. 
We proceed from the fact that the vector-potential of an electromagnetic field A must be represented as a 

sum of two terms 

A = A 0 + A 1 (Ao, B ) ,  (12) 
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where the second term is a result of the influence of additional irradiation. The vector A depends, naturally, on 

the initial vector-potential A0 (in the absence of irradiation A 1 = 0) and on the vector B, which is independent of 

it. This is due to the fact that the spectrum of the levels of the deep subsystem (in the used quantum-mechanical 

formalism) changes the spectra of the intermediate and, respectively, of the partially collectivized electron 

subsystems. 

Following the variational principle in deriving the Maxwell equations (see [3 ]), we must, however, proceed 

now from the independence of 6Aoi and t~B i variations. This implies that two fields (magnetic and particle fields) 

are independent of each other. 

The tensor components containing the projections of the vectors of magnetic and electric intensities can be 

written as a sum of two terms 

H i = no i  + MHi a n d  E i = Eoi + M e i .  

Thus, for instance, the tensor element FI2 -- - F 2 1  is written as 

el2 = Hoz + Moz. 

If the first pair of Maxwell equations is formally written in the previous form, the second pair is represented 

in the modified form owing to the above circumstances. The first of the second pair of Maxwell equations is written 

in the form 

where 

rot H 1 OH 4;r 
e Ot c (axjx + ayjy + az j z ) ,  (13) 

a i =  1 1 +-~ io i  ' i =  x ,  y ,  z .  (14) 

When M = 0 (Oali/OAOi =- 0), (13) turns into the classical Maxwell equation. 

We now perform scalar multiplication of (13) by the vector h E and multiplication of the first Maxwell 

equation of the first pair by hn. Considering the definitions of (1) and the assumption that hi is independent of 

time, we arrive at the equation 

de H de E 
Ot Ot 4~he (axjx + a~ly + azjz) = - c (h H rot E + h E rot n ) .  (15) 

Next, we designate the right-hand side of (15) as Oem/Ot , thus introducing the energy quantum era. Then 

(15) can be reduced to a form similar to (11) but with a significant correction: 

O e m -  Oett OeE 4~flj (16) 
ot ot ot ' 

where 

fl = fl (hEx a x , hey a y ,  hEz a z ) .  

When ern = 0, fl = he and we obtain the known Eq. (10). 

In turn, the energy quantum ra can be written in field form, and e H and eE, in terms of the intensity of 
the hypothetic field M: 

e m = h m M .  (17) 

Considering that, according to [1 ], 

h H rot E 0 + h E rot H 0 = 0 ,  
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then 

Ot  - -  - -  C (h H rot M E + h E rot MH). 

From the modified Maxwell equations it follows now that 

1 OM H 
- -  - rot M E , c Ot 

(18) 

(19) 

1 0 M  E 
- -  - rot M H c Ot 

4~ 4~ 
- T (axjx + a~y + a~Iz) + - ~  Jo, 

(20) 

where J0 is the vector of the current density in the absence of irradiation. 

Let us evaluate hra. With the aid of hra and ~, c we introduce the unit length Ira analogously to (2) 

hra 
tra = 

V ac 
(21) 

On the other hand, according to the general expression (5) era is 

hv 2 
era - . ( 2 2 )  

c Az 

Equating (22) to the kinetic energy of a particle of mass m, we find 

A r -  2h. (23) 
m c  

From Ar =lm it follows finally that 

2h 2~ 3/2 (24) 
l ra -  , h r a -  I/2" 

r'~C m c  

Hence we obtain the following estimates: hra - 10-21 CGS and l m -  10 -14, i.e., lm indicates the characteristic scale 

of nuclear processes (a particle is absorbed by a nucleus). 

We now return to Eq. (16). Generation of a high-temperature superconduction current means that the 

derivative Oem/Ot vanishes. At the same time the derivative OeH/Ot now differs from zero which means weakening 

of the Meissner effect under high-temperature superconductivity conditions. An important experimental problem 

in the light of the developed theory is the determination of current variation under the same conditions, especially 

the determination of numerical a i values. 

N O T A T I O N  

~, Planck constant; c, velocity of light; H, magnetic intensity; E, electric intensity; r, radius-vector; era, 
ell, eE, energy quanta; lg, unit length; j, electric current; A, vector-potential of the electromagnetic field; Fik, field 
tensor; m, mass of the absorbed particle; v, velocity; IH, IE, Ira, length units; t, time; e, electron charge; k, 
Boltzmann constant; Tcr, critical temperature. 
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